

CyBorgBackup

Release v0.4. (Installation)

[image: codecov.io]
 [https://codecov.io/github/cyborgbackup/cyborgbackup][image: _images/cyborgbackup.svg][image: _images/372c21eb64daf906269f0e11ca9745106261ef73.svg][image: _images/badge.svg][image: _images/badge1.svg][image: Codacy Badge]
 [https://www.codacy.com/gh/cyborgbackup/cyborgbackup?utm_source=github.com&utm_medium=referral&utm_content=cyborgbackup/cyborgbackup&utm_campaign=Badge_Grade]CyBorgBackup is a Web and API Interface to manage Borg Backup solution on
multiple servers based on Django and AngularJS frameworks.

Features

	Borg Backup system

	SSH Connection

	Scheduled job

	Local and Remote Borg Repository

	Catalog based on Borg Archive

	Restore Test

	Archive Size statistics

	Client and Repository preparation

	VM Backup Modules

	E-mail notification

	Auto-prune

	Logs system

	REST API

Underground

CyBorgBackup using the following tools

- PostgreSQL database
- ElasticSearch
- RabbitMQ messaging system
- Django framework
- Django REST Framework
- Celery and Beat
- AngularJS framework
- BorgBackup

CyBorgBackup have been separated in two project

- CyBorgBackup => The main API system
- CyBorgBackup-UI => The Web Interface who can manage multiple CyBorgBackup servers

The User Guide

	Installation of CyBorgBackup
	Debian Package

	Docker Install

	Install from Source Code

	Connecting to the interface

	CyBorgBackup ScreenShots

	Quickstart
	CyBorgBackup System

	Object Relation

	Enabled object

	Preparation job

	Policy Type

	Configuration
	Settings

	Repositories

	Schedules

	Clients

	Policies

	Ready ?

	VM Module Provider
	Module Name

	Module Type

	Get Client

	Get Script

	Example Proxmox Script

The API Documentation / Guide

If you are looking for information on a specific function, class, or method,
this part of the documentation is for you.

	CyBorgBackup API
	Main API V1

	Users API V1

	Clients API V1

	Schedules API V1

	Repositories API V1

	Policies API V1

	Catalogs API V1

The Community Guide

This part of the documentation details the CyBorgBackup community.

	Support
	Send a Tweet

	File an Issue

	Mailing Lists

The Contributor Guide

If you want to contribute to the project, this part of the documentation is for
you.

	How to Help
	Runtime Environments

Installation of CyBorgBackup

The following covers three different installation methods of CyBorgBackup.

Debian Package

The latest release of CyBorgBackup is available as a Debian package and can be downloaded from github releases page:

apt install git postgresql-all rabbitmq-server python3-pip python3-virtualenv python3-setuptools python3-venv systemd nginx git
wget https://api.github.com/repos/cyborgbackup/cyborgbackup/releases/latest -O - |grep -oP '"browser_download_url": "\K(.*)(?=")' |wget -i -
dpkg -i cyborgbackup_X.X.X_all.deb

To add UI system:

wget https://api.github.com/repos/cyborgbackup/cyborgbackup-ui/releases/latest -O - |grep -oP '"browser_download_url": "\K(.*)(?=")' |wget -i -
dpkg -i cyborgbackup-ui_X.X.X_all.deb

Note : MongoDB is not provided by the Debian repository, you need to follow
mongodb documentation [https://docs.mongodb.com/manual/tutorial/install-mongodb-on-debian/].

Docker Install

To install CyBorgBackup under Docker, run this command in your terminal of choice:

$ wget https://raw.githubusercontent.com/cyborgbackup/cyborgbackup/master/docker-compose.full.yml -O docker-compose.yml
$ cat > .env <<EOF
POSTGRES_PASSWORD=cyborgbackup
POSTGRES_USER=cyborgbackup
POSTGRES_NAME=cyborgbackup
POSTGRES_HOST=postgres
RABBITMQ_DEFAULT_USER=cyborgbackup
RABBITMQ_DEFAULT_PASS=cyborgbackup
RABBITMQ_DEFAULT_VHOST=cyborgbackup
SECRET_KEY=$(openssl rand -base64 47|sed 's/=//g')
EOF
$ docker-compose up
$ docker-compose exec web /bin/bash
web$ python3 /cyborgbackup/manage.py loaddata settings
web$ echo "from django.contrib.auth import get_user_model; User = get_user_model(); User.objects.create_superuser('admin@cyborg.local', 'admin')" | python3 /cyborgbackup/manage.py shell
web$ exit

If you don’t have docker-compose [https://docs.docker.com/compose/] or docker [https://www.docker.com/] installed, head over to the website for installation instructions.

Install from Source Code

CyBorgBackup is developed on GitHub, where the code is
always available [https://github.com/cyborgbackup/cyborgbackup].

You can either clone the public repository:

$ git clone https://github.com/cyborgbackup/cyborgbackup.git

Or, download the tarball [https://github.com/cyborgbackup/cyborgbackup/tarball/master]:

$ curl -OL https://github.com/cyborgbackup/cyborgbackup/tarball/master
optionally, zipball is also available (for Windows users).

The UI interface can be found on Github, the the code is always available [https://github.com/cyborgbackup/cyborgbackup-ui].
And the public repository can be found at the following address:

$ git clone https://github.com/cyborgbackup/cyborgbackup-ui.git

To build the UI docker image run the following:

$ docker build --no-cache --pull -t cyborgbackup/cyborgbackup-ui:latest .

Depending of your system, CyBorgBackup needs the following dependencies :

	python3

	python3-pip

	postgresql-server

	rabbitmq-server

	nginx

To use the CyBorgBackup container with Docker, launch the following command:

$ make cyborgbackup-docker-build
$ make docker-compose-up

Connecting to the interface

You can connect to the CyBorgBackup interface at : http://localhost:8000

Default account is :

	Login : admin@cyborg.local

	Password : admin

CyBorgBackup ScreenShots

[image: ../_images/screen_1.png]
[image: ../_images/screen_2.png]
[image: ../_images/screen_3.png]
[image: ../_images/screen_4.png]
[image: ../_images/screen_5.png]
[image: ../_images/screen_6.png]
[image: ../_images/screen_7.png]
[image: ../_images/screen_8.png]
[image: ../_images/screen_9.png]
[image: ../_images/screen_10.png]
[image: ../_images/screen_11.png]
[image: ../_images/screen_12.png]
[image: ../_images/screen_13.png]
[image: ../_images/screen_14.png]
[image: ../_images/screen_15.png]
[image: ../_images/screen_16.png]

Quickstart

Eager to get started? This page gives a good introduction in how to get started
with CyBorgBackup.

CyBorgBackup System

CyBorgBackup use some framework to give a system with capabilities of backup
system based on BorgBackup with ease.

The Web Interface and API populate the Policy, Schedule, Repository, Client
and Job object.

We use Celery Beat to manage the schedule of internal task of CyBorgBackup
like task_manager and to notify celery to start task.
Task_manager is responsible to launch job if he’s ready and not blocked
by another job.

Celery is responsible to execute task like task_manager or other. It’s the
element who execute ssh connection and execute borg backup.

Channels Workers is responsible of the websocket message between each element
and the web interface.

Callback receivers all stdout messages from celery program output to put them
in database and emit signal under the websocket.

Object Relation

A schedule describe the policy schedule. They can be affected to multiple
policies. The schedule is describe using the crontab format.

A repository describe the borg backup repository with the path and the
repository encryption key. The path must be a valid uri like SCP uri.

A client describe a backup client with their hostname only. IP and Borg Version
are filled by the preparation script.

A policy is the element who made the relation between each element. A policy
have a schedule, a repository, a type, and some clients. We can also define
the retention policy of each client backup. They can also launch post ou pre hook.

A job is the backup job based on a policy and a client. When you launch a backup
job, the system create as many jobs as there are client defined in the policy.

Depending of the settings value, some job are created in dependencies of them
like catalog job, prepare job and prune job.

Enabled object

Each object have a enabled/disabled field. This field enable the object in each
relation. For example, if you disable a schedule, each policies who used this
schedule will be unusable. The same for the client or the repository.

Preparation job

Client and repository came with a preparation job to install and prepare borg.
On the preparation script, the final step is to prevent CyBorgBackup system
that the object is ready to be used. If the hook didn’t work, the job stdout
show the curl command to launch to enable the object. Or you can use the API to
set the ready field to true.

Warning

The URL settings must be defined correctly with an accessible URL of each client of repository nodes.

Policy Type

At this time, 9 policy types has been defined in CyBorgBackup.

rootfs

The rootfs policy backup all files present in the root directory of the server
except some useless file like /dev, /proc and other.

vm

The vm policy type backup directly the Virtual Machine using the hypervisor.
They will backup the hard drive device of the virtual machine.

mysql

The mysql policy type will create a mysql dump and backup them using Borg.

You can to specify user,password and database/s in extra vars:

{"user":"backupuser","password":"backupass"}

By default, mysql policy type will backup all databases.
To specify a database, you need to add database entry in extra_vars:

{"databases":"mydb"}

To specify multiple databases, you need to add databases list in extra_vars:

{"databases":["mydb1","mydb2"]}

Command to create backup user on MySQL:

GRANT LOCK TABLES, SELECT ON *.* TO 'backupuser'@'%' identified by 'backuppass';
FLUSH PRIVILEGES

postgresql

The postgresql policy type will create a postgresql dump and backup them
using Borg.

You can to specify database in extra vars:

{"database":"mydb"}

Command to create backup user on PostgreSQL:

CREATE USER backupuser SUPERUSER password 'backuppass';
ALTER USER cyborgbackup set default_transaction_read_only = on;

piped

The piped policy type permit to launch a command on the client and backup the
output of the command to Borg.

You need to specify extra vars with piped command:

{"command":"mypipedcommand"}

config

The config policy type will backup only the /etc folder of the server.

mail

The mail policy type will backup only the /var/mail or /var/lib/mail folder of the server.

folders

The folders policy type will backup specified folder of the server.
You need to specify extra vars with piped command:

{"folders":["folder1","folder2"]}

proxmox

The folders policy type will backup specified folder of the server.
You need to specify extra vars with piped command:

{"folders":["folder1","folder2"]}

Configuration

CyBorgBackup need some configuration before be ready to use.
They will be defined in the next section.

Settings

Under the settings page, you must configure the following element :

	URL => Contains the CyBorgBackup accessible URL. It will be use by client or repository node for the preparation step.

	Mail Server => You must configure the Mail server to use the mail report of CyBorgBackup

	SSH Key => An ssh key pair must be configured in CyBorgBackup. CyBorgBackup can generate them for you. He will use them to connect on each client and on each repository. The public key must also be configured on each authorized_keys ssh file manually.

Warning

The SSH Key must be protected with a password. The password will be encrypted before stored under CyBorgBackup database.

Warning

The SSH Public Key must be configured on the “Backup User” authorized_keys file. If backup user is different of “root”, CyBorgBackup will use ‘sudo’ command for the backup

Note

If you have a specific configuration for SSH, different port or ciphers for example.
You can use the .ssh/config file on the CyBorgBackup folder.

Repositories

A repository must be defined to start backup.
The path must be in URI format as the following : user@fqdn:path

Warning

Same as the SSH Key configuration, the user defined in the path must have the CyBorgBackup SSK Key configured in authorized_keys file.

Schedules

The schedule system use the CRON format.

Clients

To use the CyBorgBackup system, you must create your first client.
The hostname must be a resolvable hostname by CyBorgBackup. It will use them to connect using SSH protocol.

Policies

The policy is the element for permit to CyBorgBackup to backup client.
It’s a relation between a schedule, a repository and clients.

Pre-hook and post-hook entries are script or command launch of each client. The script or command must be exist on them. CyBorgBackup will not pull or install them.

The “Keep” section is used to specify on many archive will be keep by the system before pruning.
For example, if you configure 7 Keep Daily and 4 Keep Weekly, CyBorgBackup will keep archives of the last 7 days made each day and one archive each week for the last 4 weeks.

By default, CyBorgbackup will connect on each client and each client will push the backup to the repository using ssh connection.
The “Pull Mode” permit to change the method, CyBorgBackup will connect on the repository node and from them, connect to each client.
Be careful, the client need to connect to the repository node.

Ready ?

Settings, Schedule, Repository, Client and Policy are configured ? CyBorgBackup is now ready to backup them.
For each new repository or client, CyBorgBackup will launch a preparation script before backup them.

You can now launch a policy to launch the backup workflow or wait for the schedule.

VM Module Provider

CyBorgBackup can use custom VM module provider to backup virtual machine based on hypervisor.

The module need to respect some prerequisites to be used by CyBorgBackup.

Module Name

This function return the module name displayed by CyBorgBackup:

def module_name():
 return 'Proxmox'

Module Type

This function return the policy type code used by CyBorgBackup to identify the utility of this module.
For VM backup provider, it must be set to ‘vm’:

def module_type():
 return 'vm'

Get Client

This function return the hostname of the hypervisor of the VM.
It will be used to connect them and launch backup script

def get_client(client):
 return 'hypervisor.example.com'

Get Script

This function return a string that represent the script send to the hypervisor and used to backup the virtual machine.
The script must return data on stdout. Data received will be directly send to borg create:

def get_script():
 return '''#!/bin/bash
echo "Hello World"
'''

Example Proxmox Script

You will find bellow an example script used to backup Proxmox VirtualMachine from her hypervisor

CyBorgBackup API

Actually, only the V1 version of the API is available.
They can be access on the url /api of the webserver and the V1 api on the url /api/v1.

Main API V1

	
GET /api/v1

	Retrieve all available submodule of the API.

Example request:

$ curl https://cyborgbackup.local/api/v1/

Example response:

{
 "ping": "/api/v1/ping",
 "config": "/api/v1/config/",
 "me": "/api/v1/me/"
}

	
GET /api/v1/ping

	Test the api and get the version

{
 "version": "1.0"
 "ping": "pong"
}

	
GET /api/v1/config

	Retrieve some configuration of the CyBorgBackup instance.

{
 "version": "1.0"
 "debug": true,
 "allowed_hosts" : ["127.0.0.1"]
}

	
GET /api/v1/me

	Retrieve information about the current logged user.

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [
 "id": 1,
 "type": "user",
 "url": "/api/v1/users/1/",
 "related": {},
 "summary_fields": {},
 "created": "2018-11-08T16:13:29.370148Z",
 "first_name": "",
 "last_name": "",
 "email": "admin@milkywan.fr",
 "is_superuser": true
]
}

Users API V1

	
GET /api/v1/users/

	Retrieve a list of all users.

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [USERS]
}

	Response JSON Object

	
	next (string) – URI for next set of Users.

	previous (string) – URI for previous set of Users.

	count (integer) – Total number of Users.

	results (array) – Array of Users objects.

	
GET /api/v1/users/(int: id)/

	Retrieve details of a single user.

{
 "id": 3,
 "type": "user",
 "url": "/api/v1/users/3/",
 "related": {},
 "summary_fields": {},
 "created": "2018-11-11T19:43:24.261706Z",
 "first_name": "",
 "last_name": "",
 "email": "cyborg@agent.local",
 "is_superuser": true
}

	Response JSON Object

	
	id (integer) – The ID of the user

	type (string) – The object type under cyborgbackup system.

	url (string) – The URL access of the user object.

	related (dict) – Related property of mapped object

	summary_fields (dict) – Some summary field of object relation

	created (string) – The creation date of the user

	first_name (string) – First name of the user

	last_name (string) – Last name of the user

	email (string) – Email of the user

	is_superuser (boolean) – Super User

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no User with this ID

	
POST /api/v1/users/

	Create a single user.

{
 "first_name": "",
 "last_name": "",
 "email": "cyborg@agent.local",
 "is_superuser": true
}

	Response JSON Object

	
	first_name (string) – First name of the user

	last_name (string) – Last name of the user

	email (string) – Email of the user

	is_superuser (boolean) – Super User

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no User with this ID

	
PATCH /api/v1/users/(int: id)/

	Update a single user.

{
 "first_name": "",
 "last_name": "",
 "email": "cyborg@agent.local",
 "is_superuser": true
}

	Response JSON Object

	
	id (integer) – The ID of the user

	first_name (string) – First name of the user

	last_name (string) – Last name of the user

	email (string) – Email of the user

	is_superuser (boolean) – Super User

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no User with this ID

	
DELETE /api/v1/users/(int: id)/

	Delete a single user.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no User with this ID

Clients API V1

	
GET /api/v1/clients/

	Retrieve a list of all clients.

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [CLIENTS]
}

	Response JSON Object

	
	next (string) – URI for next set of Clients.

	previous (string) – URI for previous set of Clients.

	count (integer) – Total number of Clients.

	results (array) – Array of Clients objects.

	
GET /api/v1/clients/(int: id)/

	Retrieve details of a single client.

{
 "id": 1,
 "type": "client",
 "url": "/api/v1/clients/1/",
 "related": {},
 "summary_fields": {},
 "created": "2018-11-22T18:17:51.831221Z",
 "modified": "2018-11-22T19:21:16.011127Z",
 "created_by": null,
 "modified_by": null,
 "hostname": "lab.example.com",
 "ip": "",
 "version": "",
 "ready": false,
 "hypervisor_ready": false,
 "hypervisor_name": "",
 "enabled": true,
 "uuid": "fa3462e3-57da-430e-bca5-3bc60d4ba5a2"
}

	Response JSON Object

	
	id (integer) – The ID of the client

	type (string) – The object type under cyborgbackup system.

	url (string) – The URL access of the client object.

	related (dict) – Related property of mapped object

	summary_fields (dict) – Some summary field of object relation

	created (string) – The creation date of the client

	modified (string) – The modification date of the client

	created_by (string) – User responsible of the creation of the client

	modified_by (string) – User responsible of the last modification

	hostname (string) – Client Hostname

	ip (string) – IP Addresses of the client

	version (string) – Borg Client Version

	ready (boolean) – Client prepared to be use with borg

	hypervisor_name (string) – Hypervisor name of the client

	hypervisor_ready (boolean) – Hypervisor prepared to be use with borg

	enabled (boolean) – Client enabled

	uuid (string) – Auto generated UUID

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Client with this ID

	
POST /api/v1/clients/

	Create a single client.

{
 "hostname": "lab.example.com",
 "ip": "",
 "version": "",
 "ready": false,
 "hypervisor_ready": false,
 "hypervisor_name": "",
 "enabled": true,
}

	Response JSON Object

	
	hostname (string) – Client Hostname

	ip (string) – IP Addresses of the client

	version (string) – Borg Client Version

	ready (boolean) – Client prepared to be use with borg

	hypervisor_name (string) – Hypervisor name of the client

	hypervisor_ready (boolean) – Hypervisor prepared to be use with borg

	enabled (boolean) – Client enabled

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Client with this ID

	
PATCH /api/v1/clients/(int: id)/

	Update a single client.

{
 "hostname": "lab.example.com",
 "ip": "",
 "version": "",
 "ready": false,
 "hypervisor_ready": false,
 "hypervisor_name": "",
 "enabled": true
}

	Response JSON Object

	
	id (integer) – The ID of the client

	hostname (string) – Client Hostname

	ip (string) – IP Addresses of the client

	version (string) – Borg Client Version

	ready (boolean) – Client prepared to be use with borg

	hypervisor_name (string) – Hypervisor name of the client

	hypervisor_ready (boolean) – Hypervisor prepared to be use with borg

	enabled (boolean) – Client enabled

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Client with this ID

	
DELETE /api/v1/clients/(int: id)/

	Delete a single client.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Client with this ID

Schedules API V1

	
GET /api/v1/schedules/

	Retrieve a list of all schedules.

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [SCHEDULES]
}

	Response JSON Object

	
	next (string) – URI for next set of Schedules.

	previous (string) – URI for previous set of Schedules.

	count (integer) – Total number of Schedules.

	results (array) – Array of Schedule objects.

	
GET /api/v1/schedules/(int: id)/

	Retrieve details of a single schedule.

{
 "id": 1,
 "type": "schedule",
 "url": "/api/v1/schedules/1/",
 "related": {},
 "summary_fields": {},
 "created": "2018-11-22T18:17:51.831221Z",
 "modified": "2018-11-22T19:21:16.011127Z",
 "created_by": null,
 "modified_by": null,
 "name": "Every Minutes",
 "crontab": "*/1 * * * * *",
 "enabled": true,
 "uuid": "fa3462e3-57da-430e-bca5-3bc60d4ba5a2"
}

	Response JSON Object

	
	id (integer) – The ID of the schedule

	type (string) – The object type under cyborgbackup system.

	url (string) – The URL access of the schedule object.

	related (dict) – Related property of mapped object

	summary_fields (dict) – Some summary field of object relation

	created (string) – The creation date of the schedule

	modified (string) – The modification date of the schedule

	created_by (string) – User responsible of the creation of the schedule

	modified_by (string) – User responsible of the last modification

	name (string) – Schedule name

	crontab (string) – Crontab schedule

	enabled (boolean) – Schedule enabled

	uuid (string) – Auto generated UUID

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Schedule with this ID

	
POST /api/v1/schedules/

	Create a single schedule.

{
 "name": "Every Minutes",
 "crontab": "*/1 * * * * *",
 "enabled": true
}

	Response JSON Object

	
	name (string) – Schedule name

	crontab (string) – Crontab schedule

	enabled (boolean) – Schedule enabled

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Schedule with this ID

	
PATCH /api/v1/schedules/(int: id)/

	Update a single schedule.

{
 "name": "Every Monday",
 "crontab": "0 5 * * MON *",
 "enabled": true
}

	Response JSON Object

	
	id (integer) – The ID of the schedule

	name (string) – Schedule name

	crontab (string) – Crontab schedule

	enabled (boolean) – Schedule enabled

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Schedule with this ID

	
DELETE /api/v1/schedules/(int: id)/

	Delete a single schedule.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Schedule with this ID

Repositories API V1

	
GET /api/v1/repositories/

	Retrieve a list of all repositories.

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [REPOSITORIES]
}

	Response JSON Object

	
	next (string) – URI for next set of Repositories.

	previous (string) – URI for previous set of Repositories.

	count (integer) – Total number of Repositories.

	results (array) – Array of Repository objects.

	
GET /api/v1/repositories/(int: id)/

	Retrieve details of a single repository.

{
 "id": 1,
 "type": "repository",
 "url": "/api/v1/repositories/1/",
 "related": {},
 "summary_fields": {},
 "created": "2018-11-22T18:17:51.831221Z",
 "modified": "2018-11-22T19:21:16.011127Z",
 "created_by": null,
 "modified_by": null,
 "name": "Main Repo",
 "path": "cyborgbackup@backup:/repository",
 "repository_key": "0123456789abcdef",
 "original_size": 722,
 "compressed_size": 747,
 "deduplicated_size": 747,
 "ready": true,
 "enabled": true,
 "uuid": "fa3462e3-57da-430e-bca5-3bc60d4ba5a2"
}

	Response JSON Object

	
	id (integer) – The ID of the repository

	type (string) – The object type under cyborgbackup system.

	url (string) – The URL access of the repository object.

	related (dict) – Related property of mapped object

	summary_fields (dict) – Some summary field of object relation

	created (string) – The creation date of the repository

	modified (string) – The modification date of the repository

	created_by (string) – User responsible of the creation of the repository

	modified_by (string) – User responsible of the last modification

	name (string) – Repository name

	path (string) – URI path to access the repository from each client

	repository_key (string) – Key used to encrypt the repository

	original_size (integer) – Calculated size of all archives

	compressed_size (integer) – Calculated compressed size of all archives

	deduplicated_size (integer) – Calculated deduplicated size of all archives

	ready (boolean) – Repository prepared to be use with borg

	enabled (boolean) – Repository enabled

	uuid (string) – Auto generated UUID

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Repository with this ID

	
POST /api/v1/repositories/

	Create a single repository.

{
 "name": "Main Repo",
 "path": "cyborgbackup@backup:/repository",
 "repository_key": "0123456789abcdef",
 "ready": true,
 "enabled": true
}

	Response JSON Object

	
	name (string) – Repository name

	path (string) – URI path to access the repository from each client

	repository_key (string) – Key used to encrypt the repository

	ready (boolean) – Repository prepared to be use with borg

	enabled (boolean) – Repository enabled

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Repository with this ID

	
PATCH /api/v1/repositories/(int: id)/

	Update a single repository.

{
 "name": "Main Repo",
 "path": "cyborgbackup@backup:/repository",
 "repository_key": "0123456789abcdef",
 "ready": true,
 "enabled": true
}

	Response JSON Object

	
	id (integer) – The ID of the repository

	name (string) – Repository name

	path (string) – URI path to access the repository from each client

	repository_key (string) – Key used to encrypt the repository

	ready (boolean) – Repository prepared to be use with borg

	enabled (boolean) – Repository enabled

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Repository with this ID

	
DELETE /api/v1/repositories/(int: id)/

	Delete a single repository.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Repository with this ID

Policies API V1

	
GET /api/v1/policies/

	Retrieve a list of all policies.

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [POLICIES]
}

	Response JSON Object

	
	next (string) – URI for next set of Policies.

	previous (string) – URI for previous set of Policies.

	count (integer) – Total number of Policies.

	results (array) – Array of Policy objects.

	
GET /api/v1/policies/(int: id)/

	Retrieve details of a single policy.

{
 "id": 1,
 "type": "policy",
 "url": "/api/v1/policies/1/",
 "related": {
 "launch": "/api/v1/policies/1/launch/",
 "calendar": "/api/v1/policies/1/calendar/",
 "schedule": "/api/v1/schedules/1/",
 "repository": "/api/v1/repositories/1/"
 },
 "summary_fields": {
 "repository": {
 "id": 1,
 "name": "Main Repo",
 "path": "cyborgbackup@backup:/repository"
 },
 "schedule": {
 "id": 1,
 "name": "Each Monday",
 "crontab": "0 5 * * MON *"
 }
 },
 "created": "2018-11-22T18:51:22.894984Z",
 "modified": "2018-11-23T20:54:51.013495Z",
 "created_by": null,
 "modified_by": null,
 "uuid": "3a67b010-bbc4-43de-937e-11270c710aad",
 "name": "Full Features",
 "extra_vars": "",
 "clients": [
 1
],
 "repository": 1,
 "schedule": 1,
 "policy_type": "vm",
 "keep_hourly": 1,
 "keep_yearly": null,
 "keep_daily": null,
 "keep_weekly": null,
 "keep_monthly": null,
 "vmprovider": "proxmox",
 "next_run": "2018-11-26T05:00:00Z",
 "mode_pull": false,
 "enabled": true
}

	Response JSON Object

	
	id (integer) – The ID of the policy

	type (string) – The object type under cyborgbackup system.

	url (string) – The URL access of the policy object.

	related (dict) – Related property of mapped object

	summary_fields (dict) – Some summary field of object relation

	created (string) – The creation date of the policy

	modified (string) – The modification date of the policy

	created_by (string) – User responsible of the creation of the policy

	modified_by (string) – User responsible of the last modification

	name (string) – Policy name

	extra_vars (string) – JSON Dictionnary of variable used by the system

	clients (array) – Array of Client ID

	repository (integer) – Repository ID

	schedule (integer) – Schedule ID

	policy_type (string) – Policy Backup Type

	keep_hourly (integer) – Number of hourly archives to keep

	keep_daily (integer) – Number of daily archives to keep

	keep_weekly (integer) – Number of weekly archives to keep

	keep_monthly (integer) – Number of monthly archives to keep

	keep_yearly (integer) – Number of yearly archives to keep

	vmprovider (string) – Name of the VM module provider

	next_run (string) – Date of the next run of the backup job

	mode_pull (boolean) – Backup in pull mode

	enabled (boolean) – Policy enabled

	uuid (string) – Auto generated UUID

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Policy with this ID

	
POST /api/v1/policies/

	Create a single policy.

{
 "name": "Full Features",
 "extra_vars": "",
 "clients": [
 1
],
 "repository": 1,
 "schedule": 1,
 "policy_type": "vm",
 "keep_hourly": 1,
 "keep_yearly": null,
 "keep_daily": null,
 "keep_weekly": null,
 "keep_monthly": null,
 "vmprovider": "proxmox",
 "mode_pull": false,
 "enabled": true
}

	Response JSON Object

	
	name (string) – Policy name

	extra_vars (string) – JSON Dictionnary of variable used by the system

	clients (array) – Array of Client ID

	repository (integer) – Repository ID

	schedule (integer) – Schedule ID

	policy_type (string) – Policy Backup Type

	keep_hourly (integer) – Number of hourly archives to keep

	keep_daily (integer) – Number of daily archives to keep

	keep_weekly (integer) – Number of weekly archives to keep

	keep_monthly (integer) – Number of monthly archives to keep

	keep_yearly (integer) – Number of yearly archives to keep

	vmprovider (string) – Name of the VM module provider

	mode_pull (boolean) – Backup in pull mode

	enabled (boolean) – Policy enabled

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Policy with this ID

	
PATCH /api/v1/policies/(int: id)/

	Update a single repository.

{
 "name": "Main Repo",
 "path": "cyborgbackup@backup:/repository",
 "repository_key": "0123456789abcdef",
 "ready": true,
 "enabled": true
}

	Response JSON Object

	
	name (string) – Policy name

	extra_vars (string) – JSON Dictionnary of variable used by the system

	clients (array) – Array of Client ID

	repository (integer) – Repository ID

	schedule (integer) – Schedule ID

	policy_type (string) – Policy Backup Type

	keep_hourly (integer) – Number of hourly archives to keep

	keep_daily (integer) – Number of daily archives to keep

	keep_weekly (integer) – Number of weekly archives to keep

	keep_monthly (integer) – Number of monthly archives to keep

	keep_yearly (integer) – Number of yearly archives to keep

	vmprovider (string) – Name of the VM module provider

	mode_pull (boolean) – Backup in pull mode

	enabled (boolean) – Policy enabled

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Policy with this ID

	
DELETE /api/v1/policies/(int: id)/

	Delete a single repository.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Policy with this ID

	
POST /api/v1/policies/(int: id)/launch/

	Launch a backup job based on the policy.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Policy with this ID

	
GET /api/v1/policies/(int: id)/calendar/

	Get all datetime of the current month for each run of the policy

[DATETIME]

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Policy with this ID

Catalogs API V1

	
GET /api/v1/catalogs/

	Retrieve a list of all catalogs entries.

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [CATALOGS]
}

	Response JSON Object

	
	next (string) – URI for next set of Catalogs.

	previous (string) – URI for previous set of Catalogs.

	count (integer) – Total number of Catalogs.

	results (array) – Array of Catalog objects.

	
GET /api/v1/catalogs/(int: id)/

	Retrieve details of a single catalog entry.

{
 "id": 1,
 "url": "/api/v1/catalogs/1/",
 "archive_name": "vm-lab.example.com-2018-11-23_22-02",
 "path": "stdin",
 "job": 1,
 "mode": "-rw-rw----",
 "mtime": "2018-11-23T23:03:52Z",
 "owner": "root",
 "group": "root",
 "size": 12,
 "healthy": true
}

	Response JSON Object

	
	id (integer) – The ID of the catalog entry

	url (string) – The URL access of the repository object.

	archive_name (string) – The Borg Backup archive name

	path (string) – Full path of the file in the archive

	job (integer) – Job ID catalog entry related

	mode (string) – Unix mode of the file

	mtime (string) – Latest modification date of the file

	owner (string) – Owner of the file

	group (string) – Group of the file

	size (integer) – Size of the file in Bytes

	healthy (boolean) – Healthy state of the file

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – There is no Repository with this ID

Support

If you have questions or issues about CyBorgBackup:

Send a Tweet

If your question is less than 280 characters, feel free to send a tweet to
@Gaetan_F [https://twitter.com/Gaetan_F],

File an Issue

If you notice some unexpected behaviour in CyBorgBackup,
file an issue on GitHub [https://github.com/cyborgbackup/cyborgbackup/issues].

Mailing Lists

Current Mailing Lists :

	Developers : developers@lists.cyborgbackup.dev

	Users : users@lists.cyborgbackup.dev

How to Help

CyBorgBackup is under active development, and contributions are more than welcome!

	Check for open issues or open a fresh issue to start a discussion around a bug.

	Fork the repository [https://github.com/cyborgbackup/cyborgbackup] on GitHub and start making your
changes to a new branch.

	Send a pull request and bug the maintainer until it gets merged and published. :)

Runtime Environments

CyBorgBackup currently supports the following versions of Python:

	Python 3.5

	Python 3.6

	Python 3.7

 HTTP Routing Table

 /api

 		 	

 		
 /api	

 	
 	
 GET /api/v1	

 	
 	
 GET /api/v1/catalogs/	

 	
 	
 GET /api/v1/catalogs/(int:id)/	

 	
 	
 GET /api/v1/clients/	

 	
 	
 GET /api/v1/clients/(int:id)/	

 	
 	
 GET /api/v1/config	

 	
 	
 GET /api/v1/me	

 	
 	
 GET /api/v1/ping	

 	
 	
 GET /api/v1/policies/	

 	
 	
 GET /api/v1/policies/(int:id)/	

 	
 	
 GET /api/v1/policies/(int:id)/calendar/	

 	
 	
 GET /api/v1/repositories/	

 	
 	
 GET /api/v1/repositories/(int:id)/	

 	
 	
 GET /api/v1/schedules/	

 	
 	
 GET /api/v1/schedules/(int:id)/	

 	
 	
 GET /api/v1/users/	

 	
 	
 GET /api/v1/users/(int:id)/	

 	
 	
 POST /api/v1/clients/	

 	
 	
 POST /api/v1/policies/	

 	
 	
 POST /api/v1/policies/(int:id)/launch/	

 	
 	
 POST /api/v1/repositories/	

 	
 	
 POST /api/v1/schedules/	

 	
 	
 POST /api/v1/users/	

 	
 	
 DELETE /api/v1/clients/(int:id)/	

 	
 	
 DELETE /api/v1/policies/(int:id)/	

 	
 	
 DELETE /api/v1/repositories/(int:id)/	

 	
 	
 DELETE /api/v1/schedules/(int:id)/	

 	
 	
 DELETE /api/v1/users/(int:id)/	

 	
 	
 PATCH /api/v1/clients/(int:id)/	

 	
 	
 PATCH /api/v1/policies/(int:id)/	

 	
 	
 PATCH /api/v1/repositories/(int:id)/	

 	
 	
 PATCH /api/v1/schedules/(int:id)/	

 	
 	
 PATCH /api/v1/users/(int:id)/	

Index

 _images/screen_11.png
Schedule Information

Name

Each 1 minutes

Minutes Hourly Daily Weekly Monthly
Day(s) Hours) Minute(s)
oEvery% e m% e :{n e

Hour(s)

(O Week Day (MON-FR) al{ 1

Minute(s)
{ 0 - ‘

Yearly

Enabled

SAVE

_images/screen_12.png
Settings

Mail Server

sshKey

Backup User

Mail From

ssh Password

Job Cleaning

url

localhost

Auto Restore Test

ENCRYPTED

Replace

‘ root

‘ cyborg@cyborg.local

‘ undefined

‘ 90
‘ http://cyborg

SAVE

_images/screen_1.png

_images/screen_10.png
Repository Information

Name

Path

Repository Key

‘ Test

‘ cyborgbackup@repohost:/mnt/repo

‘ abcdef1234567890

Enabled

SAVE

_images/screen_15.png
CyBorgBackup © suver pamin

(@ Dashboard

Clients Tasks Policies Errors
Sl 2 704 3 675
O catalog
CJ client <
Backup Statistics Backup Schedules
[Policy <
® Faled @ Success [Orignal Size ([Deduplicated Size
Y - . October 2020 today ¢ >
Backups Size
@ schedule < Sun Mon Tue Wed Thu Fri sat
1 2|
A User <
4 5| 6| 7| 8| 9|
8 Settings

8aBxferiodo Bt
8aRoot Backlip
aTes

" 12| 13| 14 15 16|
8aBxferiodo Bt

8aRoot Backlip
aTes

18] 19] 20 21 22 23|
8aBxferiodo Bt

8aRoot Backlip
aTes

25| 26| 27, 28| 29 30
TaBxteriodd Bt

7aRoot Backlip
TaTest

_images/screen_16.png
(@) Dashboard
& Jobs

O catalog.
J client

9 Policy

© Repository
© schedule

A User

% settings

CyBorgBackup

Archives Catalog

~ @ folders
v @ 127.001
> © 2020-05-09_14-41
> © 2020-05-08_13-44

> © 2020-04-19_14-26

CyBorgBackup 2020

Archive Detail

Name :
Client :
Type:

Original size :

Compressed size :

Deduplicated size :

Started :

Duration :

Item Detall

Filename
File mode :
Healthy
Owner :
Group :
Size :

Mtime :

@ Super Admin

_images/screen_13.png
User Information

Email

First Name

Last Name

Password

‘ admin@cyborg.local ‘

" supr \

" e \

[rosmors \

‘ Password Confirmation ‘

Super Admin

SAVE

Notification

O Notify Backup Daily
O Notify Backup Monthly
O Notify Backup Failed

SAVE

O Notify Backup Weekly
() sty ek summay

_images/screen_14.png
Restore Job

Restore archive "folders-127.0.0.1-2020-05-09_14-41"

Select
Destination
Host

Client X v

Destination
folder ‘ Enter path folder of item

-

CANCEL ‘

_images/screen_2.png
@ RESTAPI

REST API

REST API®

GET /api/

HTTP 200 OK

Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

X-API-Time: 0.001s

{
"description": "CyBorgBackup API Rest",
“current_version": "/api/v1l/",
"available_versions": {
"vi": "“/api/vl/"
}

»:) Log in

OPTIONS

4

GET

_images/screen_3.png
Login
Hello! Log in with your email.

Email address:

Email address

Password:

Password

Specific CyBorg server

CyBorg Server Address :

Enter CyBorg Server Address

0G IN

Don't have an account? Register

_images/screen_4.png
(O sonnboe

Clients Tasks Policies Errors
& Jobs O O O O
O catalog
@ client
Backup Statistics Backup Schedules
List Client
-O- Failed -O- Success ([l Original Size () Deduplcated Size
e October 2020 today
Backups Size
O Policy sun Mon Tue Wed Thu Fri sat
1 2 3
List Policy
Add Policy 4 5 6 7 8] 9 10
@ Repository
" 12 13 14 15 16 17
@© schedule N
18 19 20 21 22 23 24
List User
Add User 25 26 27 28 29 30 31

8 settings

nav.xhtml

 Table of Contents

 		
 CyBorgBackup

 		
 Installation of CyBorgBackup

 		
 Debian Package

 		
 Docker Install

 		
 Install from Source Code

 		
 Connecting to the interface

 		
 CyBorgBackup ScreenShots

 		
 Quickstart

 		
 CyBorgBackup System

 		
 Object Relation

 		
 Enabled object

 		
 Preparation job

 		
 Policy Type

 		
 rootfs

 		
 vm

 		
 mysql

 		
 postgresql

 		
 piped

 		
 config

 		
 mail

 		
 folders

 		
 proxmox

 		
 Configuration

 		
 Settings

 		
 Repositories

 		
 Schedules

 		
 Clients

 		
 Policies

 		
 Ready ?

 		
 VM Module Provider

 		
 Module Name

 		
 Module Type

 		
 Get Client

 		
 Get Script

 		
 Example Proxmox Script

 		
 CyBorgBackup API

 		
 Main API V1

 		
 Users API V1

 		
 Clients API V1

 		
 Schedules API V1

 		
 Repositories API V1

 		
 Policies API V1

 		
 Catalogs API V1

 		
 Support

 		
 Send a Tweet

 		
 File an Issue

 		
 Mailing Lists

 		
 How to Help

 		
 Runtime Environments

_images/screen_7.png
Client Information

Hostname

‘ 127.0.0.1

100

x| Test

Enabled

SAVE

_images/screen_8.png
(@ Dashboard

D Jobs

O catalog

@ client

List Client

Add Client

Add Policy

@ Repository

(O

List User

Add User

8 settings

+ ADD POLICY

Name
Extended Proxmox
Root Backup on Every Day

Test

Schedule
Each 1 minutes
Each 1 minutes

Each 1 minutes

Repository
Test
Test

Test

(O super Admin

Next Run Enabled
5/18/2020 8:00:00 AM B [+ Ja]s]
5/8/2020 8:00:00 PM B [+ Ja]s]
5/11/2020 8:00:00 AM B [+ Ja]s]

_images/screen_5.png
Archives Catalog

~ @ folders
v @ 127001
> © 2020-05-09_14-41
> © 2020-05-08_13-44

> © 2020-04-19.14-26

Archive Detail

Name : folders-127.0.0.1-2020-05-09_14-
4

Client:127.0.0.1

Type: folders

Original size : 2350000
Compressed size : 1030000
Deduplicated size : 84560
Started : 5/9/2020 4:41:48 PM
Duration : 00:00

Item Detail

Filename :
File mode :
Healthy :
Owner :
Group:
Size:

Mtime :

_images/screen_6.png
DETAILS

STATUS @ successful

LAUNCH MODE manual

JOBTYPE job

POLICY NAME Extended Proxmox
POLICY TYPE proxmox

SCHEDULE Each 1 minutes
REPOSITORY Test

STARTED 5/17/2020 2:10:29 PM
FINISHED 5/17/2020 2:16:51 PM

Backup Job Extended Proxmox cassini.milkywan.space EECEEN 00:00:00 Y]

1 Identity added: /tmp/cyborgbackup_712_sooir3og/credential_cyborgbackup_ssh_key (cyborgbacku
petestgf

2

3 Warning: Permanently added (ECDSA) to the list
of known hosts

4

5 Warning: Permanently added ' (ECDSA) to the list
of known hosts

6

7 Remote: Warning: Permanently added ' CECDSA) to
the list of known hosts

8

9| INFO: starting new backup job: vzdump 165 --mode snapshot

10 | INFO: Starting Backup of WM 165 (gemu)

11 INFO: Backup started at 2020-05-17 14:10:33

12 INFO: status = running

13 | INFO: update VM 165: -lock backup

14 | INFO: VM Name: kepler

15 INFO: include disk 'virtiod' 'NASTitan:165/vm-165-base-disk.qcon2’ 306G

16 INFO: include disk 'virtiol' 'NASTitan:165/vm-165-cloud-seed.ran’ 368K

17 INFO: backup mode: snapshot

x

_static/comment-bright.png

_images/screen_9.png
Policy Information

Name

Type

Schedule

Rep

Clients

Pre-Hook

Post-Hook

Extended Proxmox

Proxmox

Each 1 minutes

Test

x| hypervisor1 |/

Enter Pre-Hook Script Name

Enter Post-Hook Script Name

KEEP HOURLY KEEP DAILY KEEP WEEKLY KEEP MONTHLY

KEEP YEARLY

O Mode Pull

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down.png

_static/cyborgbackup-sidebar.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/requests-sidebar.png

_static/up-pressed.png

_static/requests-logo-small.png

_static/up.png

